Organic Macromolecules and the Genetic Code

- A cell is mostly water.
 - The rest of the cell consists mostly of carbonbased molecules.
 - Organic chemistry is the study of carbon compounds.

- Carbon can use its bonds to
 - Attach to other carbons.
 - Form an endless diversity of carbon skeletons.

Copyright © 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings. All rights reserved.

- Each type of organic molecule has a unique threedimensional shape that defines its function in an organism.
 - The molecules of your body recognize one another based on their shapes.

Giant Molecules from Smaller Building Blocks

- On a molecular scale, many of life's molecules are gigantic.
 - Biologists call them macromolecules.
 - Examples: DNA, proteins

Biological Molecules

- There are four categories of large molecules in cells:
 - Carbohydrates
 - Lipids
 - Proteins
 - Nucleic acids

Proteins

- A protein is a polymer constructed from amino acid building blocks.
- Proteins perform most of the tasks the body needs to function. Behind most cell functions, there is a protein.
- **Structural Proteins** PLAY PLAY **Receptor Proteins** PLAY Enzymes **Storage Proteins** PLAY **Contractile Proteins Hormonal Proteins** PLAY PLAY) **Transport Proteins Sensory Proteins** PLAY PLAY Gene Regulatory PLAY **Defensive Proteins** Proteins

The Monomers: Amino Acids

• All proteins are constructed from a the same set of 20 kinds of amino acids.

- Each amino acid consists of
 - A central carbon atom bonded to four groups.
 - Three of the groups are identical in all 20 amino acids, and each has a distinct 4th group.

Figure 3.20

Copyright © 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings. All rights reserved.

Proteins as chains

• A linked chain of amino acids

Figure 3.21

- Your body has tens of thousands of different kinds of proteins.
 - The arrangement of amino acids of any given protein makes it different from any other protein.

- Primary structure
 - The specific sequence of amino acids in a protein

Figure 3.22

- A slight change in the primary structure of a protein affects its ability to function.
 - The substitution of one amino acid for another in hemoglobin causes sickle-cell disease.

Normal red blood cell

Normal hemoglobin

(a)

Sickled red blood cell

Sickle-cell hemoglobin

Nucleic Acids

- Nucleic acids are information storage molecules.
 - They provide the directions for building proteins.

- There are two types of nucleic acids:
 - DNA, deoxyribonucleic acid
 - RNA, ribonucleic acid

- The genetic instructions in DNA
 - Must be translated from "nucleic acid language" to "protein language."

Copyright © 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings. All rights reserved.

- Nucleic acids are chains of 4 nucleotides:
 - Guanine (G)
 - Thymine (T)
 - Cytosine (C)
 - Adenine (A)

Figure 3.28b

Copyright @ 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings. All rights reserved.

Now, here is one of the central problems of biology. Much of what is going on in a cell, as we have seen, is carried out by proteins. There are all kinds of proteins, depending on the sequence of their **20** amino acids:

Ala-Ala-Gly-Leu-Ser-...

Will be entirely different from

Gly-Ala-Leu-Ser-Ala-...

The information for the length and sequence of each protein must be contained in the genes, which are made of DNA. Here again, a gene is made up of a chain of **4** building blocks, called nucleotides:

A-G-C-T-C- . . .

C-G-T-A-C-...

This sequence of 4 building blocs must somehow code for sequence of 20 different amino acids in proteins. How can that be done?

To grasp nature's solution, let's examine a simpler code first

Imagine that you take part in a game show. You and your partner are competing with another pair of contestants. Your task is to invent a code which will allow you, when the show start, to communicate with your partner by relying on the code and by using 4 colors to make a series of dots on paper. How will you go about this?

How do you express 26 letters in 4 colors?

A one-for-one code will not work:

Let's try 1 color coding for a single letter: In this code, <u>dad</u> is: • •

Obviously, this code can't go very far: With just one color per letter, we can only specify 4 letters—but we need at least 26!

Will any combination of 2 colors be enough for 26 letters? When we try, we find out that only 16 permutations are possible?

•	а	•	е	0	i	0	m	word can
•	b	•	f	•	j	•	n	•
•	С	•	g	•	k	•	0	
•	d	•	h	•	I	•	р	

So, 2 colors per letter: not enough. How about 3? This is a PARTIAL table. Can you see how many color combinations are possible? a e m h n k С S g \mathbf{O} d h n

Copyright © 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings

With color triplets then, I can write any message in English, coding even for caps and punctuation marks!

Now, life is written by a similar code. DNA is made of a chain of 4 links or "colors" (nucleotides) AGCT. Protein is made of a chain of 20 different links—amino acids. You can specify any amino acid you want, by using triplets like AAA, AAG, AAG, AAG, AGG,

- So the idea is: Triplets of DNA bases which
 - Specify all the amino acids.
 - Are called codons.

The Genetic Code

- The genetic code is the set of rules relating nucleotide sequence to amino acid sequence.
- Here it is: one of the greatest scientific breakthroughs of the 20th century:

Second base

		U	C	A	G	
First base	U	UUU UUC UUA UUA Leucine (Leu)	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGA Tryptophan (Trp)	U C A (Trp) G
	C	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC Histidine (His) CAA Glutamine (Gln)	CGU CGC CGA CGG	U C A g
	A	AUU AUC AUA AUA AUG Met or start	ACU ACC ACA ACG Threonine (Thr)	AAU AAC AAC AAA AAA AAA AAG (Lys)	AGU AGC AGC AGA AGA AGG Arginine (Arg)	C C Third
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG GAG GAG Aspartic acid (Asp) Glutamic acid (Glu)	GGU GGC GGA GGG	U C A G

Copyright © 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings. All rights reserved.

• The genetic code is shared by virtually all organisms.